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On Pearson's Random Walk and Some Statistical 
Properties of a Quasiperiodic Observable in a Simple 
Quantum Model 

F. T. Hioe  1 

The dynamics of the atomic inversion of a quantum model of field-atom 
interaction is studied from a statistical point of view. We determine its mean 
motion and its partial recurrence frequencies. We employed the mathematical 
analysis used by Lagrange, Wintner, and Weyl in their pioneering studies of the 
perturbed planetary motion and its connection with the studies of Pearson's 
random walks. 
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A model Hamiltonian which has been frequently used in the studies of the 
resonant interaction of radiation with matter (l) is 

H = �89 hwo@ z + n~a a +  ^ ^ + o _ a ) (1) 

where the @'s are the usual 2 x 2 Pauli matrices, ~ and a t are the Bose 
operators for the quantized field mode, ~0 0 the natural transition frequency 
of the atom, r the mode frequency, and X the field-atom coupling parame- 
ter. The model is called the Jaynes-Cummings model (2) in quantum optics 
and is essentially identical to the spin-phonon model of NMR. It is one of 
the very few known quantum mechanical models that is exactly soluble for 
arbitrarily large coupling constants. Its dynamics, however, have not been 
fully investigated until very recently. (3,4) 

The exact solution for the atomic inversion w ( t ) -  (az(t)} is known to 
be given by 

{ A---~2 [ fa2(m) f~2(m) A 2 ] c ~  t' w ( t ) = m ~ _  Pk + 1 (2) 
k=0  
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where m -- + 1 or - 1 represents the initial state of the atom, Pk represents 
the initial pho ton  distribution which, for the cases (coherent  and  chaotic) 
which are interested in, are given, respectively, by  

~(fi)~e-~/k! coherent  (Poissonian) (3a) 

Pk = ~ [ ( ~ +  1 ) - i [ ~ / ( ~  + 1)] k chaot ic ( thermal )  (3b) 

being the mean photon number. The A in Eq. (2) denotes the field-atom 
frequency difference 

A = o~ 0 - o~ (4) 

and ~2k(m ) denotes 

ak(m) = A 2 + 4X2(k + (5) 

The physical meaning of w(t) is that  it represents on a scale between - 1 
and + 1 the degree of excitation of a two-level system brought  about  by the 
interaction of the a tom and the radiation field. The sum in Eq. (2) has no 
known closed form analytic expression. 

The first significant property of w(t) given by  Eq. (2) when the initial 
pho ton  distribution is coherent  was discovered by Eberly, Narozhny ,  and 
Sanchez-Mondragon.  (3) They  noted the very interesting recurring "col- 
lapses" and "revivals" of the quanti ty w(t) as shown in Fig. 1 (in the 

scaled time 1- = Xt/2V~ interval 0 < I- ~< 4~r), and  they were able to derive 
an approximate  analytic expression for w(t) that  accurately represented 

i.o~ ! 

. . . . . . . .  . . . .  . . . .  ' -,, 

100"rr 101Tr I 0 2 ~  I03~  104-n" 
~ T  

Fig. 1. Time histories of the atomic inversion w(t) with the atom initially in the "down" state 
( m  = - 1) and the field initially in a coherent state with the average photon number ~ = 20. 
The figure covers two widely separated time intervals of the same length 0 < ~- < 4~z and 
100~z < T < 104~r, where the scaled time z is defined by z ~ Xt/2~nn. 
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these behaviors. On a longer time scale, however, as shown in the second 
part of Fig. 1, neighboring revivals begin to overlap, and the overlaps 
gradually include more distant revivals, causing the envelope of the atomic 
inversion signal to appear increasingly irregular. When the initial photon 
distribution is chaotic as given by Eq. (3b), no similar distinctive "col- 
lapses" or "revivals" behaviors were observed, and the quantity w(t) 
appeared irregular from the beginning. 

Our interest here concerns the properties of the quasiperiodic function 
w(t) in the region after a long time, compared to the initial collapse and 
revival times, namely, in the region where the behavior of this function 
appears irregular. We ask what quantities should characterize these irregu- 
lar behaviors? Is there a statistical distribution, and is there a meaningful 
mean frequency of oscillation? The purpose of this note is to summarize the 
results of our recent work (5) in this direction. 

We were very fortunate that the mathematical analysis required for 
our study has been worked out for us by Lagrange, Wintner, ~6) Weyl, (7) 
and others in their pioneering study of the perturbed planetary orbits, and 
that a beautiful exposition of these works has been given by Montroll. (s) 

We first note that a generalized version of Eq. (2) represented by finite 
or infinite sums of the form 

N 

x(t) = ~, akcos(akt + 6~) (6) 
k = 0  

where all the ak's are positive and the ~2~'s linearly independent, have been 
extensively studied first in connection with the perturbed planetary motion, 
and subsequently in statistical mechanics ~ 9,10); and the problem is known to 
be closely connected with the problem of the so-called Pearson's random 
walk ~1~ first studied by Rayleigh. ~2) The linear independence of f~k's is 
strictly true in our case if A 2 in Eq. (5) is any (arbitrary) irrational number. 
We are interested in the case when A 2 is very small. Without loss of 
generality, we assume A 2 to be a small irrational number. 

The Kronecker-Weyl theorem ~ 13) can then be used to replace the time 
average in the characteristic function f(a) of x(t) of Eq. (6) given by 

1 f0 T f ( a )  -- r~lim -~ exp[ lax(t)] dt (7) 

by the corresponding phase average and get 

2~r 2~r N 
f ( a ) - 1  f0 " ' '  ( exp(ia ~akcoseok]dePo...deON 

(2$ r )N+l  a0 \ k = 0  ] 

N 

= I'[ Jo(ak a) (8) 
k = 0  
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where Jo(x) is the zeroth-order Bessel function. The probability density 
P(x) of x(t) is the Fourier transform of the characteristic functionf(a) and 
is therefore given by 

N 
oo i 

P(x) = 2~ ( I'[ Jo(aka) e-  ~Xda (9) 
" -  ~ k = 0  

which is the first useful quantity for characterizing the distribution of x(t). 
The second useful quantity for characterizing x(t) is its "partial 

recurrence," or the average frequency with which x(t) achieves particular 
value q. One defines L(q), the average frequency x(t) = q by 

L(q) = lim 1 N r ( q )  (10) 
T o  oo 

where Nr(q) is the number of zeros of 

F(t) = x(t) - q (11) 

Analytic expression for L(q) was first given by Kac, (14) and a simpler 
derivation was given by Mazur and Montroll: ~ 9) 

DL- n-2cosqa 
L(q) = 2~r2 

[.0o j • Jo(akcO I-I J0(ak( a2 + ~/2s 7 - ( 1 2 )  
= k = 0  

The third useful quantity for characterizing x(t) is its "mean motion" 
or mean angular frequency defined as follows: 

Let x(t) or Eq. (6) be the real part of a complex quantity z(t) given by 

N 

z(t) = ~ ake i(a*t+~*) (13) 
k = 0  

Write Eq. (13) as 

z(t) = r(t)e i*<t) (14) 

Then the mean motion or the mean angular frequency ~ is defined by 

l f 0 T '  ~ =  lim ~(t )dt  (15) 

Weyl (7) and Wintner (6) obtained the following expression for ~ in terms of 
the weighted sum of s 

N 

= ~ Wks k (16) 
k = 0  

where W k has the following interpretation in terms of Pearson's random 



On Pearson's Random Walk 471 

walk: it is the probability that the random walker walking in a two- 
dimensional space, in a sequence of N steps of lengths a0, a I . . . . .  a~_ ], 
a/~+l , . . . ,  a N spans a distance less than a k. This probability is given by 

N 

Wk = a~ fo~J,(a~o) [I Jo(ajp)dP (17) 
j=O, j./--k 

Using Eqs. (9), (12), (16), and (17), we now summarize our results (5) 
for the various quantities P(x), L(q), and ~ which characterize the long 
time behavior of the atomic inversion w(t) of our problem given by Eq. (2) 
when the initial photon distribution is (a) coherent and (b) chaotic. When 
the mean photon number ~ is >> 1 (in practice ~ > 5, say), we found that 

1 e x p ( '  x2)  P(x) ~-- ~ o  ~ 08) 

where 

o 2 I (1/47r~)]/2 for the initial Poissonian distribution (19a) 

-----[1/2~ for the initial thermal distribution (19b) 

q2 

where e is given by Eqs. (19) and 

~2~/~X2/~ - for the initial Poissonian distribution (21a) ~2~.~ 

[~2 for the initial thermal distribution (21b) 

and 

r 2 ~ X  for the initial Poissonian distribution (22a) 

l ~ ~/g ?~ for the initial thermal distribution (22b) 

The extent to which the quantities and expressions given by Eqs. 
(18)-(22) "characterize" the apparently "irregular" behavior of the atomic 
inversion w(t) given by Eq. (2) can be better appreciated by the following 
observation: Figs. 2a, 2b and 2c showed the function w(t) with different 
initial mean photon numbers corresponding to a thermal distribution. Our 
results given by Eqs. (18)-(22) predict that the record of w(t) should be 
invariant to changes in ~ if w(t)/o is plotted instead of w(t), and if the time 
unit is ~t instead of t. Figures 3a, 3b and 3c provide a test of this 
prediction. They showed the records of w(t)/o vs. ~t for the same three 
different values of fi as in Figs. 2. The distributions are now seen to be 
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Fig, 2. Portions of long-time record of w(t) with thermalpk and m = - 1  for (a) ~ = 10, (b) 
n = 30, and (c) n = 100. 
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Same portions of long-time record of w(t) as in Fig. 2 but  with the quantities now 
scaled according to w(t)/o and ~t.  
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remarkably similar. This is another way of seeing that we have found the 
principal characteristics of the function w(t). 

From the mathematical point (as well as physical point) of view, the 
region of even greater interest is when ~ is small, say, 0 < ~ < 5. In this 
region, especially in the region 0 < ~ < 1, P(x) and L(q) are far from being 
Gaussian. Consider the exact expression of P(x) given by Eq. (9). To be 
specific, let us take, in Eq. (2), m --- + 1 (i.e., the atom initially in the upper 
state), p~ = (~)%-~/k! (i.e, the photon field to be initially coherent), and 
A ~ 0. Then noting that in Eq. (9), for the case ~ = 0, 

1 for k = 0 (23) 
a ~ = p ~ =  0 for k = l , 2  . . . .  

and Jo(0) = 1, we find 

[ ~  l for Ixl < 1 
e(x) = f_ Jo(.)e -'~ d . =  ( 1 -  x 2)'/2 (24) 

for Ixl > 1 

which is plotted in Fig. 4a. As ~ increases slightly from zero, we have 

a o ~  1, a 1 ,a  2 . . . .  ~ 0 

If we now assume that a 2, a 3 . . . .  can be set exactly equal to zero, then 
P(x) becomes 

P(x) = -~-g~ f_~Jo(aoa)ao(a,eOe-i"X da (25) 

This integral can be evaluated exactly (~s) and the result can be expressed in 
terms of the complete elliptic integral of the first kind. This is shown in Fig. 
4b where P(x) has logarithmic infinities at x = _ (a 0 - al). The inclusion 
of Jo(a2a)Jo(a3a)... in Eq. (9) with N-+  r would have the effect of 
"smoothing" out the function P(x) to the point not only that it would 
become differentiable everywhere but also that it would possess derivatives 
of arbitrarily high order. (6) However, the smoothed curve is still very 
different from Gaussian. 

P(x)  P(x)  P(x )  P (x )  

-,'.o o do'  x x x 
(a) (b) (c) (d) 

Fig. 4. Qualitative sketches of the probability density P(x) for different values of ~. 
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P(x) P(x) P(x) P(x) 

fi=O.I fi=0.5 ~=1 

-,.o o , . o  x ' x x 

(o) (b) (c) (d) 

Fig. 5. Probability density P(x) for different values of ~. 

If ~ is increased further but still very much < 1, and if we continue the 
process of using only a finite number of Jo(aka) in the integrand of Eq. (9) 
and represent P(x) now by 

P ( x ) =  1 f;ooJo(aoa)Jo(a,a)Jo(a2a)e-i~Xde ~ (26) 

then we have already come to the point when P(x) can no longer be 
expressed in closed form. But expression such as (26) has been studied and 
numerically plotted in lattice dynamics (15) and this is shown qualitatively in 
Fig. 4c. Again the inclusion of the factors Jo(a3a)Jo(a4oO... in the 
integrand would have the effect of smoothing out the various sharp corners 
in Fig. 4c, but the curve for P(x) is still far from being Gaussian. 

As ~ increases further, we expect the distribution curve to become 
smoother, quickly approaching a Gaussian form as ~ > 5, as shown in Fig. 
4d. 

The more precise probability density distributions obtained numeri- 
cally when Jo(a2a)Jo(a3eO... is included are shown in Figs. 5(a)-(d). 

It will be recognized that expressions given by Eqs. (24), (25), and (26) 
are precisely those representing the frequency distribution in lattice dynam- 
ics (15) in the harmonic approximation in one, two, and three dimensions, 
respectively. Thus increasing ~ from the value 0 in our problem has the 
same effect as increasing the dimensionality of the lattice considered in the 
study of its vibrational frequency spectrum. The lattice frequency spectrum 
in turn is closely related to the lattice random walk generating func- 
tion.(15 19) It is interesting how the study of a physical observable of a 
simple quantum model (1) has brought together such a widely different 
collection of topics. 
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